
G. Zachmann 35 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 7 May 2014 SS

§  Remarks:

§  __global__ defines a kernel function

§  Each '__' consists of two underscore characters

§  A kernel function must return void

§  __device__ and __host__ can be used together

host host __host__ float hostFunc() ;‏

host/device device __global__ void kernelFunc() ;‏

device device __device__ float deviceFunc(); ‏

Only callable
from:

Executed
on:

Three different kinds of functions in CUDA

G. Zachmann 36 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 7 May 2014 SS

§  Example for the latter: make cuComplex usable on both device
and host

struct cuComplex // define a class for complex numbers
{
 float r, i; // real, imaginary part

 __device__ __host__
 cuComplex(float a, float b) : r(a), i(b) {}

 __device__ __host__
 float magnitude2(void)
 {
 return r * r + i * i;
 }
 // etc. ...
};

G. Zachmann 37 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 7 May 2014 SS

§  An "optimization":

§  The sequence of zi can
either converge towards a single
(complex) value,

§  or it can end up in a cycle of values,

§  or it can be chaotic.

§  Idea:

§  Try to recognize such cycles;
if you realize that a thread is
caught in a cycle, exit immediately
(should happen much earlier in most cases)

§ Maintain an array of the k most recent elements of the sequence

§  Last time I checked: 4x slower than the brute-force version!

All points here
converge
towards
fixed point

All points here
converge
towards cycle
of length 2

G. Zachmann 38 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 7 May 2014 SS

Querying the Device for its Capabilities

§  How do you know how many threads can be in a block, etc.?

§  Query your GPU, like so:

int devID;
cudaGetDevice(&devID); // GPU currently in use
cudaDeviceProp props;
cudaGetDeviceProperties(&props, devID);

unsigned int threads_per_block = props.maxThreadsPerBlock;

G. Zachmann 39 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 7 May 2014 SS

For Your Reference: the Complete Table of the cudaDeviceProp

ptg

QUERYING DEVICES

29

 int minor;

 int clockRate;

 size_t textureAlignment;

 int deviceOverlap;

 int multiProcessorCount;

 int kernelExecTimeoutEnabled;

 int integrated;

 int canMapHostMemory;

 int computeMode;

 int maxTexture1D;

 int maxTexture2D[2];

 int maxTexture3D[3];

 int maxTexture2DArray[3];

 int concurrentKernels;

 }

Table 3.1

DEVICE PROPERTY DESCRIPTION

char name[256];
"GeForce GTX 280")

size_t totalGlobalMem

size_t sharedMemPerBlock

int regsPerBlock

int warpSize

size_t memPitch

Continued

From the Library of Daisy Alford Smith

ptg

INTRODUCTION TO CUDA C

30

DEVICE PROPERTY DESCRIPTION

int maxThreadsPerBlock

int maxThreadsDim[3]

int maxGridSize[3]

size_t totalConstMem

int major

int minor

size_t textureAlignment

int deviceOverlap
cudaMemcpy()

int multiProcessorCount

int kernelExecTimeoutEnabled

int integrated

int canMapHostMemory

int computeMode

int maxTexture1D

Table 3.1

From the Library of Daisy Alford Smith

G. Zachmann 40 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 7 May 2014 SS

ptg

INTRODUCTION TO CUDA C

30

DEVICE PROPERTY DESCRIPTION

int maxThreadsPerBlock

int maxThreadsDim[3]

int maxGridSize[3]

size_t totalConstMem

int major

int minor

size_t textureAlignment

int deviceOverlap
cudaMemcpy()

int multiProcessorCount

int kernelExecTimeoutEnabled

int integrated

int canMapHostMemory

int computeMode

int maxTexture1D

Table 3.1

From the Library of Daisy Alford Smith

ptg

INTRODUCTION TO CUDA C

30

DEVICE PROPERTY DESCRIPTION

int maxThreadsPerBlock

int maxThreadsDim[3]

int maxGridSize[3]

size_t totalConstMem

int major

int minor

size_t textureAlignment

int deviceOverlap
cudaMemcpy()

int multiProcessorCount

int kernelExecTimeoutEnabled

int integrated

int canMapHostMemory

int computeMode

int maxTexture1D

Table 3.1

From the Library of Daisy Alford Smith

G. Zachmann 41 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 7 May 2014 SS

ptg

QUERYING DEVICES

31

DEVICE PROPERTY DESCRIPTION

int maxTexture2D[2]

int maxTexture3D[3]

int maxTexture2DArray[3]

int concurrentKernels

NVIDIA CUDA Programming Guide

#include "../common/book.h"

int main(void) {

 cudaDeviceProp prop;

 int count;

 HANDLE_ERROR(cudaGetDeviceCount(&count));

 for (int i=0; i< count; i++) {

 HANDLE_ERROR(cudaGetDeviceProperties(&prop, i));

 //Do something with our device's properties

 }

}

Table 3.1

From the Library of Daisy Alford Smith

G. Zachmann 42 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 7 May 2014 SS

Problem Partitioning

§  Problem: your input, e.g. the vectors, is larger than the maximally
allowed size along one dimension?

§  I.e., what if vec_len > maxThreadsDim[0] * maxGridSize[0]?

§  Solution: partition the problem (color = thread ID)

Only these two
partitionings are
good for GPUs!

G. Zachmann 43 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 7 May 2014 SS

Example: Adding Huge Vectors

§  Vectors of size 100,000,000 are not uncommon in high-
performance computing (HPC) …

§  The thread layout:

§  Kernel launch:

§  Index computation in the kernel:

dim3 threads(16,16); // = 256 threads per block
int n_threads_pb = threads.x * threads.y;
int n_blocks = (vec_len + n_threads_pb - 1) / n_threads_pb;
int nb_sqrt = (int)(ceilf(sqrtf(n_blocks)));
dim3 blocks(nb_sqrt, nb_sqrt);

addVectors<<< blocks, threads >>>(d_a, d_b, d_c, n);

unsigned int tid_x = blockDim.x * blockIdx.x + threadIdx.x;
unsigned int tid_y = blockDim.y * blockIdx.y + threadIdx.y;
unsigned int i = tid_y * (blockDim.x * gridDim.x) + tid_x;

G. Zachmann 44 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 7 May 2014 SS

§  Visualization of this index computation:

blockIdx.x

blockIdx.y

Block

Grid

threadIdx.x

threadIdx.y

x

y

G. Zachmann 45 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 7 May 2014 SS

Constant Memory

§  Why is it so important to declare constant variables/instances in
C/C++ as const ?

§  It allows the compiler to …

§  optimize your program a lot

§  do more type-checking

§  Something similar exists in CUDA → constant memory

G. Zachmann 46 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 7 May 2014 SS

Example: a Simple Raytracer

§  The ray-tracing principle:
1.  Shoot rays from camera through every pixel into scene (primary rays)

2.  If the rays hits more than one object, then consider only the first hit

3.  From there, shoot rays to all light sources (shadow feelers)

4.  If a shadow feeler hits another obj → point is in shadow w.r.t. that light source.
Otherwise, evaluate a lighting model (e.g., Phong [see "Computer graphics"])

5.  If the hit object is glossy, then shoot reflected rays into scene (secondary rays) → recursion

6.  If the hit object is transparent, then shoot refracted ray → more recursion

G. Zachmann 47 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 7 May 2014 SS

§  Simplifications (for now):

§ Only primary rays

§  Camera is at infinity →
primary rays are orthogonal to image plane

§ Only spheres

-  They are so easy, every raytracer has them J

2/27/13 11:19 AM

Page 1 of 1http://schabby.de/wp-content/uploads/2012/08/Orthogonal-Projection-plain.svg

x

y

z

G. Zachmann 48 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 7 May 2014 SS

§  The data structures:

struct Sphere
{
 Vec3 center; // center of sphere
 float radius;
 Color r, g, b; // color of sphere

 __device__
 bool intersect(const Ray & ray, Hit * hit)
 {
 ...
 }
};

G. Zachmann 49 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 7 May 2014 SS

§  The mechanics on the host side:

int main(void)
{
 // create host/device bitmaps (see Mandelbrot ex.)
 ...
 Sphere * h_spheres = new Sphere[n_spheres];
 // generate spheres, or read from file

 // transfer spheres to device (later)

 // generate image by launching kernel
 // assumption: img_size = multiple of block-size!
 dim3 threads(16,16);
 dim3 blocks(img_size/treads.x, img_size/treads.y);
 raytrace<<<blocks,threads>>>(d_bitmap);

 // display, clean up, and exit
};

G. Zachmann 50 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 7 May 2014 SS

The mechanics on the device side

__global__
void raytrace(unsigned char * bitmap) {
 // map thread id to pixel position
 int x = blockIdx.x * blockDim.x + threadIdx.x;
 int y = blockIdx.y * blockDim.y + threadIdx.y;
 int offset = x + y * (gridDim.x * blockDim.x);

 Ray ray(x, y, camera); // generate primary ray

 // check intersection with scene, take closest one
 min_dist = INF;
 int hit_sphere = MAX_INT;
 Hit hit;
 for (int i = 0; i < n_spheres; i ++) {
 if (intersect(ray, i, & hit)) {
 if (hit.dist < min_dist) {
 min_dist = hit.dist; // found a closer hit
 hit_sphere = i; // remember sphere; hit info
 } // is already filled
 }
 }
 // compute color at hit point (if any) and set in bitmap
}

G. Zachmann 51 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 7 May 2014 SS

Declaration & Transfer

§  Since it is constant memory, we declare it as such:

§  Transfer now works by a different kind of Memcpy:

const int MAX_NUM_SPHERES 1000;
__constant__ Sphere c_spheres[MAX_NUM_SPHERES];

int main(void)
{
 ...
 // transfer spheres to device
 cudaMemcpyToSymbol(c_spheres, h_spheres,
 n_spheres * sizeof(Sphere));
 ...
};

G. Zachmann 52 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 7 May 2014 SS

§  Access of constant memory on the device (i.e., from a kernel)
works just like with any globally declared variable

§  Example:

__constant__ Sphere c_spheres[MAX_NUM_SPHERES];

__device__
bool intersect(const Ray & ray, int s, Hit * hit)
{
 Vec3 m(c_spheres[s].center – ray.orig);
 float q = m*m – c_spheres[s].radius*c_spheres[s].radius;
 float p = ...
 solve_quadratic(p, q, *t1, *t2);
 ...
}

m d
r

M

P
t1

t2

(t ·d�m)2 = r2 t2 � 2t ·md + m2 � r2 = 0⇒

G. Zachmann 53 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 7 May 2014 SS

Some Considerations on Constant Memory

§  Size of constant memory on the GPU is fairly limited (~48 kB)

§  Check cudaDeviceProp

§  Reads from constant memory can be very fast:

§  "Nearby" threads accessing the same constant memory location incur
only a single read operation (saves bandwidth by up to factor 16!)

§  Constant memory is cached (i.e., consecutive reads will not incur
additional traffic)

§  Caveats:

§  If "nearby" threads read from
different memory locations
→ traffic jam!

G. Zachmann 54 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 7 May 2014 SS

New Terminology

§  "Nearby threads" = all threads within a warp

§  Warp := 32 threads next to each other

§  Each block's set of threads is partitioned into warps

§  All threads within a warp are executed on a single
streaming multiprocessor (SM) in lockstep

§  If all threads in a warp read from the same
memory location → one read instruction by SM

§  If all threads in a warp read from random
memory locations → 32 different read
instructions by SM, one after another!

§  In our raytracing example, everything is fine (if
there is no bug J)

For more details: see "Performance with constant memory" on course web page

G. Zachmann 55 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 7 May 2014 SS

Overview of a GPU's Architecture

Nvidia's Kepler architecture as of 2012 (192 single-precision cores / 15 SM)

G. Zachmann 56 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 7 May 2014 SS

One Streaming Multiprocessor

G. Zachmann 57 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 7 May 2014 SS

Thread Divergence Revisited

§  This execution of threads in lockstep fashion on one SM (think
SIMD) is the reason, why thread divergence is so bad

§  Thread divergence can occur at each occurrence of if-then-
else, while, for, and switch (all flow control statements)

§  Example:

1. pass

2. pass

G. Zachmann 58 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 7 May 2014 SS

Control Flow Divergence

BranchBranch

Path A

Path C

Branch

Path B

§  The more complex your control flow graph (this is called
cyclometric complexity), the more thread divergence can occur!

G. Zachmann 59 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 7 May 2014 SS

Consequences for You as an Algorithm Designer / Programmer

§  Try to devise algorithms that consist of kernels with very low
cyclometric complexity

§  Avoid recursion (would probably further increase thread divergence)

§  The other reason is that we would need one stack per thread

§  If your algorithm heavily relies on recursion, then it may not be well suited
for massive (data) parallelism!

